Common Derivatives

f(x) f'(x) f''(x)
y = sin(x) y = cos(x) y = -sin(x)
y = cos(x) y = -sin(x) y = -cos(x)
y = tan(x) y = sec2(x) y = 2 tan(x)/cos2(x)
y = sin-1(x) y = 1/1 - x2 y = x/(1 - x2)3
y = cos-1(x) y = -1/1 - x2 y = -x/(1 - x2)3
y = tan-1(x) y = 1/(x2 + 1) y = -2x/(x2 + 1)2
y = csc(x) y = -csc(x) cot(x) y = 2 cot2(x) + 1/sin(x)
y = sec(x) y = sec(x) tan(x) y = 2 tan2(x) + 1/cos(x)
y = cot(x) y = -csc2(x) y = 2 cot(x)/sin2(x)
y = ex y = ex y = ex
y = x2 y = 2x y = 2
y = x3 y = 3x2 y = 6x
y = x ln x - x y = ln x y = 1/x
y = ln x y = 1/x y = -1/x2

See a visualization to show why the derivative of ex is ex.